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1 INTRODUCTION
We introduce Spike Time Encoded Addressable Memory (STEAM),
a method for persistent and addressable memory in spiking neural
networks. STEAM is built using principles from the Spike Time
Interval Computation Kernel (STICK) framework [3], which en-
codes numeric values as the time interval between spike events and
relies on precise timing and synchrony to perform event-driven
computation. We implement addressable memory through the com-
position of networks that separately encapsulate flow control and
persistence. With the ability to superimpose values encoded by
time intervals, these structures lead to linearly-sized spiking neural
networks that sort and search in linear time. STEAM can be imple-
mented entirely using basic leaky integrate and fire (LIF) neurons.

2 MEMORY AND SUPERIMPOSITION
Registers play a critical role in digital computers. In a neural archi-
tecture, mechanisms that implement rewritable and volatile mem-
ory may provide analogous functionality by quickly storing and
retrieving values needed for computation and providing the basis
for the ability to perform operations over variables [4].

In STICK, values are encoded as the time interval between two
spikes [3], and neural networks are constructed to perform op-
erations on the temporally-encoded values. We use an encoding
function f (·) and decoding function f −1 (·) to provide a linear map
from the domain x ∈ [0, 1] to a time interval Tmin ≤ ∆t ≤ Tmax
where the encoded interval ∆t is bounded between Tmin and Tmax.
For neuron model dynamics and figure notation, we refer to [3].

2.1 Scalars
Temporally-encoded values are transient by nature, i.e., a time
interval expires after a finite duration. In such a scheme, memory
networks are crucial for storing and synchronizing values. In a
neural architecture, memory may generally be achieved by setting
themembrane potential of a neuron proportional to a numeric value
to store. In this sense, memory can be viewed as a spatiotemporal
conversion: a value remains serialized as a physical quantity until it
is later recalled, upon which it is converted from space (a physical
quantity) to time (interval between spikes).

The ability to store and recall a single scalar value is achieved
by the memory network shown in Figure 1. The network behaves
much like a timer, where the value of the timer is set by two input
spikes to the store neuron. The difference in time between the two
input spikes is stored in the membrane potential of the acc neuron.
This difference can be recalled by inputting a single spike to the
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Figure 1: Memory network (left) and chronogram (right)
where the value 0.3 is stored and recalled.

recall neuron, upon which a single spike is later emitted by the
output neuron. This behavior is shown in the chronogram in Figure
1 where the network stores and recalls the value 0.3.

2.2 Vectors and sets
Using the memory network as a building block, we introduce two
memory structures: a vector, which stores an ordered sequence of
scalars, and a set, which stores an unordered set of scalars.

Shown in Figure 2 (top), the sequential memory network is com-
posed of N memory networks connected in serial. Each memory
location is a copy of the memory network described above. The
input neuron recall is connected to the first memory location,mem0.
A single spike to recall causes a chain reaction as each memory
network simultaneously outputs the value it stored and recalls the
next memory location. A network that stores N values will output
2N spikes when recalled. The spacing between values, i.e., delay
between the 2nd spike of value xi and the 1st spike of value xi+1,
is controlled by the synaptic delay between the output of mem i
and recall of mem i + 1.

As an example, the chronogram of a network that stores N = 3
values is shown in Figure 3 (left), where values x0 = 0.25, x1 = 0.15,
and x2 = 0.35. Since values are output in sequence, the total time
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Figure 2: Sequential memory network (top) and superim-
posed memory network (bottom).

to recall the contents of a vector is (N − 1)δ +
∑N
i=0 f (xi ) for N

values and δ spacing delay between values.
A central principle of encoding data as time is that values can

be superimposed, whereby several values are projected onto the
same interval. A single spike marks the beginning of a set of su-
perimposed values, and each subsequent spikes marks the end of
an interval, i.e., a single value. Superposition provides a compact
representation for multiple values, requiring only N + 1 spikes to
represent N values. The principle of superposition can be leveraged
to build spiking networks that sort and search in linear time.

Encompassing this principle is the superimposed memory net-
work, shown in Figure 2 (bottom). Unlike sequential memory, an
input spike to recall causes every value to be recalled in parallel
and piped to a single output, resulting in the superimposition of all
values in memory. Since values are recalled in parallel, if there are
two values of equal value in different locations, they will appear as
a single value at the output. In this regard, superimposed memory
can indicate only set membership and does not indicate the location
or number of equalities of each value.

The behavior of the superimposed memory network and result-
ing output is shown in Figure 3 (right). Generally, the total time to
recall the contents of superimposed memory is proportional to the
largest value, maxxi , since this will be the largest interval.

3 APPLICATION: SORTING
Sorting may be achieved by combining three components: superim-
posed memory, a routing network (not described here), and sequen-
tial memory. Sorting with a spiking neural network exploits the
natural ordering of timed events, akin to the ordering of integers
in a non-comparison sort. The superimposed memory stores the
input values to be sorted and the sequential memory stores the
output values in ascending order. As the input values are recalled
in parallel, the output values are also stored in parallel. Since values
are superimposed, this operation completes in time proportional to
the largest value.
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Figure 3: Sequential (left) and superimposed (right) memory
chronograms. Sequentialmemory outputs values as a vector
and superimposed memory outputs values as a set.

4 CONCLUSIONS AND FUTUREWORK
Alongside the use of neuromorphic chips as accelerators for deep
neural networks, there is a growing interest in leveraging neu-
ral architectures to perform symbolic processing [1, 2, 5, 6]. Our
work doesn’t aim to provide a biologically plausible or even bio-
logically inspired memory, but instead, a practical framework for
addressable memory on neuromorphic devices. We see this work as
a step towards leveraging emerging neural-inspired architectures
for symbolic processing tasks for which machine learning is cur-
rently not well suited and towards the integration of symbolic and
sub-symbolic processing on a single architecture.

In future work, we aim to further build the repertoire of spik-
ing networks that process temporally-encoded values. We plan to
demonstrate how massive parallelism and event-driven computa-
tion may lead to efficient solutions to classical computer science
problems such as sorting and searching and to design spiking neural
networks that perform variable binding and instruction execution
in a temporal encoding scheme.
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